For all kinds of data munging with H2O please follow here. The link here shows how to slice columns from a H2O data frame.
Here is the python script to show how to filter ignored columns:
import h2o from h2o.estimators.glm import H2OGeneralizedLinearEstimator h2o.init() cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") ignore_columns = ["name", "economy", "cylinders"] all_columns = cars.columns predictors = set(all_columns).difference(ignore_columns) predictors = list(predictors) response = "economy_20mpg" print(all_columns) print(ignore_columns) print(predictors) train, valid = cars.split_frame(ratios = [.8]) cars_glm = H2OGeneralizedLinearEstimator(family = 'binomial') cars_glm.train(x = predictors, y = response, training_frame = train, validation_frame = valid)
Thats it, enjoy!!