Saving H2O models from R/Python API in Hadoop Environment

When you are using H2O in clustered environment i.e. Hadoop the machine could be different where h2o.savemodel() is trying to write the model and thats why you see the error “No such file or directory”. If you just give the path i.e. /tmp and visit the machine ID where H2O connection is initiated from R, you will see the model stored there.
Here is a good example to understand it better:
Step [1] Starting Hadoop driver in EC2 environment as below:
[ec2-user@ip-10-0-104-179 ~]$ hadoop jar h2o- -nodes 2 -mapperXmx 2g -output /usr/ec2-user/005
Open H2O Flow in your web browser:  <=== H2O is started.
Note: Above you could see that hadoop command is ran on ip address however the node where H2O server is shown as
Step [2] Connect R client with H2O
> h2o.init(ip = "", port = 54323, strict_version_check = FALSE)
Note: I have used the ip address as shown above to connect with existing H2O cluster. However the machine where I am running R client is different as its IP address is
Step [3]: Saving H2O model:
h2o.saveModel(my.glm, path = "/tmp", force = TRUE)
So when I am saving the mode it is saved at machine even when the R client was running at
ec2-user@ip-10-0-65-248 ~]$ ll /tmp/GLM*
-rw-r--r-- 1 yarn hadoop 90391 Jun 2 20:02 /tmp/GLM_model_R_1496447892009_1
So you need to make sure you have access to a folder where H2O service is running or you can save model at HDFS something similar to as below:
h2o.saveModel(my.glm, path = "hdfs://", force = TRUE)

Thats it, enjoy!!

Running python and pysparkling with Zeppelin and YARN on Hadoop

Apache Zeppelin is very useful to use cell based notebooks (similar to jupyter) to work with various applications i.e. spark, python, hive, hbase etc by using various interpreters.
With H2O and Sparkling Water you can use Zeppelin on Hadoop cluster with YARN, and then could use Python or Pysparkling to submit jobs.
Here are the steps using Pyspakling with YARN on a hadoop cluster.
1. Get the latest build of sparkling water from here
2. Download and unzip the correct Sparkling Water version comparable with the Spark version into one of the edge node in your Hadoop cluster.
3. Set the following environment variables to the right path before running services:
export MASTER=”yarn-client” // To submit to the Yarn cluster
export SPARK_HOME=“path_to_the_directory_where_spark_unzipped”
export HADOOP_CONF_DIR=“path_to_the_hadoop_installation”export SPARK_SUBMIT_OPTIONS=”–packages ai.h2o:sparkling-water-examples_2.11:2.1.0”
export PYTHONPATH=“_path_to_where_python_installed”
export SPARKLING_EGG=$(ls -t /sparkling-water-2.1.0/py/build/dist/h2o_pysparkling*.egg | head -1)
//path to the Sparkling egg file needs to be updated above
Please make sure to check above version values to reflect the following:
  • 2.11-> refers to the scala version.
  • 2.1.0 —> refers to the spark version.
4. Set the “spark.executor.memory 4g” in Zeppelin either in the configuration file or in the Zeppelin UI if Error 143 is seen while starting the zeppelin server.
Note: To configure it in the Zeppelin UI, goto the dropdown next to the user at theTop right corner , select Interpreters and in the Spark section either edit or add the configuration.
5. Start the Zeppelin server using the command below. This would start Zeppelin in a Yarn container.
bin/ -Pspark-2.1
6. In Zeppelin notebook, create a new note with the markdown as below and add the path to the egg file. This will add the dependency and the classes of pysparkling.
sc.addPyFile(“_path_to_the egg_file_on_disk/h2o_pysparkling_2.1-2.1.99999-py2.7.egg”)
7. Now, one can start calling pysparkling API’s like below:
sc.addPyFile(“_path_to_the egg_file_on_disk/h2o_pysparkling_2.1-2.1.99999-py2.7.egg”)
from pysparkling import *
from pyspark import SparkContext
from pyspark.sql import SQLContext
import h2o hc = H2OContext.getOrCreate(sc)
8. To use the scala Sparkling water, one does not need to add dependency explicitly in the note in Zeppelin. A sample script would look like


import org.apache.spark.h2o._
val rdd = sc.parallelize(1 to 1000, 100).map( v => IntHolder(Some(v)))
val h2oContext = H2OContext.getOrCreate(sc)
Thats all, enjoy!!

Open Source Distributed Analytics Engine with SQL interface and OLAP on Hadoop by eBay – Kylin

What is Kilyn?

  • Kylin is an open source Distributed Analytics Engine with SQL interface and multi-dimensional analysis (OLAP) to support extremely large datasets on Hadoop by eBay.


Key Features:

  • Extremely Fast OLAP Engine at Scale:
    • Kylin is designed to reduce query latency on Hadoop for 10+ billions of rows of data
  • ANSI-SQL Interface on Hadoop:
    • Kylin offers ANSI-SQL on Hadoop and supports most ANSI-SQL query functions
  • Interactive Query Capability:
    • Users can interact with Hadoop data via Kylin at sub-second latency, better than Hive queries for the same dataset
  • MOLAP Cube:
    • User can define a data model and pre-build in Kylin with more than 10+ billions of raw data records
  • Seamless Integration with BI Tools:
    • Kylin currently offers integration capability with BI Tools like Tableau.
  • Other Highlights:
    • Job Management and Monitoring
    • Compression and Encoding Support
    • Incremental Refresh of Cubes
    • Leverage HBase Coprocessor for query latency
    • Approximate Query Capability for distinct Count (HyperLogLog)
    • Easy Web interface to manage, build, monitor and query cubes
    • Security capability to set ACL at Cube/Project Level
    • Support LDAP Integration

Keywords: Kylin, Big Data, Hadoop, Jobs, OLAP, SQL, Query

A collection of Big Data Books from Packt Publication

I found that Packt publication have few great books on Big Data and here is a collection of few books which I found very useful:Screen Shot 2014-09-30 at 11.50.08 AM

Packt is giving its readers a chance to dive into their comprehensive catalog of over 2000 books and videos for the next 7 days with LevelUp program:


Packt is offering all of its eBooks and Videos at just $10 each or less

The more EXP customers want to gain, the more they save:

  • Any 1 or 2 eBooks/Videos – $10 each
  • Any 3 to 5 eBooks/Videos – $8 each
  • Any 6 or more eBooks/Videos – $6 each

More Information is available at  |

For more information please visit :