# Performing complex group by on independent columns with H2O and R

Our objective is to perform a complex group by operation which run a function on multiple columns. Lets consider the sample data frame below:

```X1 X2 X3
1    2    4
2    1    -2
3    3    4
1    3    4
2    3    4
3    3    1```

Now lets try to run a group by on X1, and calculate the sums of X2 and X3 then the results will be as below:

```X1    X2-Sum  X3-Sum
1     5       8
2     4       2
3     6       5```

The following code snippet show how to get it done:

```> airlinesURL = "https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv"
> airlines.hex = h2o.importFile(path = airlinesURL, destination_frame = "airlines.hex")
> colnames(airlines.hex)
>cols = c("Distance", "ArrDelay", "DepDelay")
> originFlights = h2o.group_by(data = airlines.hex[c("FlightNum",cols)], by = "FlightNum", sum(cols),gb.control = list(na.methods = "ignore", col.names = NULL))

>>> Using lapply now
> res = h2o.cbind(lapply(cols, function(x){h2o.group_by(airlines.hex,by="FlightNum",sum(x))}))
> res
FlightNum sum_Distance FlightNum0 sum_ArrDelay FlightNum1 sum_DepDelay
1         1         3815          1           23          1           39
2         2         2519          2           84          2           23
3         3         4069          3          NaN          3          NaN
4         4         1740          4           44          4           64
5         5         2535          5           62          5           59
6         6         1844          6          -46          6           -6
[2439 rows x 6 columns]

## Binding the results into one data frame:
> res = lapply(cols, function(x){h2o.group_by(airlines.hex,by="FlightNum",sum(x))})
> h2o.merge(h2o.merge(res[[1]], res[[2]]), res[[3]])
FlightNum sum_DepDelay sum_ArrDelay sum_Distance
1         1           39           23         3815
2         2           23           84         2519
3         3          NaN          NaN         4069
4         4           64           44         1740
5         5           59           62         2535
6         6           -6          -46         1844
[2439 rows x 4 columns]

# Another way to calculate and bind results:
> res <- h2o.cbind(lapply(cols, function(x){h2o.group_by(airlines.hex,by="FlightNum",sum(x))}))
> df <- res[,c("FlightNum", "sum_DepDelay", "sum_ArrDelay", "sum_Distance")]

# Another way to calculate and bind results in one line:
> res <- h2o.cbind(lapply(cols, function(x){h2o.group_by(airlines.hex,by="FlightNum",sum(x))}))[,c(1,2,4,6)]
```

# Big Data 1B dollars Club – Top 20 Players

Here is a list of top players in Big Data world having influence over billion dollars (or more) Big Data projects directly or indirectly (not in order):

1. Microsoft
3. Amazon
4. IBM
5. HP
6. Oracle
7. VMWare
9. EMC
11. GE
12. Intel
13. Cloudera
14. SAS
15. 10Gen
16. SAP
17. Hortonworks
18. MapR
19. Palantir
20. Splunk

The list is based on each above companies involvement in Big data directly or indirectly along with a direct product or not. All of above companies are involved in Big Data projects worth considering Billion+ …

# What to do when compiling Hadoop branch 1.2.x returns java.io.IOException: Cannot run program "autoreconf"

Compiling Hadoop branch 1.2.x code in OSX returned exception as below:

create-native-configure:

BUILD FAILED
/Users/avkash/work/hadoop/branch-1.2/build.xml:634: Execute failed: java.io.IOException: Cannot run program “autoreconf” (in directory “/Users/avkash/work/hadoop/branch-1.2/src/native”): error=2, No such file or directory
at java.lang.ProcessBuilder.processException(ProcessBuilder.java:478)
at java.lang.ProcessBuilder.start(ProcessBuilder.java:457)
at java.lang.Runtime.exec(Runtime.java:593)
at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291)
at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106)
at org.apache.tools.ant.Target.execute(Target.java:390)
at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1399)
at org.apache.tools.ant.Project.executeTarget(Project.java:1368)
at org.apache.tools.ant.helper.DefaultExecutor.executeTargets(DefaultExecutor.java:41)
at org.apache.tools.ant.Project.executeTargets(Project.java:1251)
at org.apache.tools.ant.Main.runBuild(Main.java:809)
at org.apache.tools.ant.Main.startAnt(Main.java:217)
at org.apache.tools.ant.launch.Launcher.run(Launcher.java:280)
at org.apache.tools.ant.launch.Launcher.main(Launcher.java:109)
Caused by: java.io.IOException: error=2, No such file or directory
at java.lang.UNIXProcess.forkAndExec(Native Method)
at java.lang.UNIXProcess.<init>(UNIXProcess.java:53)
at java.lang.ProcessImpl.start(ProcessImpl.java:91)
at java.lang.ProcessBuilder.start(ProcessBuilder.java:452)
… 23 more

Looking src/native there is no “autoconf” shipped with the source so to solve this problem the best option is to install

└─[1] <git:(master✗✈)> brew install automake
==> Installing automake dependency: autoconf
######################################################################## 100.0%
==> ./configure –prefix=/usr/local/Cellar/autoconf/2.69
==> make install
🍺 /usr/local/Cellar/autoconf/2.69: 69 files, 2.0M, built in 21 seconds
==> Installing automake
######################################################################## 100.0%
==> ./configure –prefix=/usr/local/Cellar/automake/1.14
==> make install
🍺 /usr/local/Cellar/automake/1.14: 127 files, 2.5M, built in 7 seconds

Thats all!!

After than just run the following commands to make sure the same exception does not come back:

\$ant create-native-configure

# Customized bash command prompt with line separator and other goodies

I wanted to have a fancy looking and very useful terminal windows with customize command prompt so after digging I build something as below for me:

So what it have:

• Line Separator including current time at the end of the terminal
• History counter along with current command counter
• Logged user @ Hostname
• Current working folder \$

Here is what I have done. First created a file call .avkashbash_profile at my \$HOME folder as below:

fill=”-“
reset_style='[33[00m]’
status_style=\$reset_style'[33[0;32m]’ # gray color; use 0;37m for lighter color
prompt_style=\$reset_style
command_style=\$reset_style'[33[0;32m]’ # bold black
# Prompt variable:
PS1=”\$status_style”‘\$fill[T]n'”\$prompt_style”‘\${debian_chroot:+(\$debian_chroot)}e[0;31me[47m[!:#]e[
0m-e[1;33m[u@h]e[0mn[w]e[0;32m\$ ‘”\$command_style “
# Reset color for command output
# (this one is invoked every time before a command is executed):
function prompt_command {
# create a \$fill of all screen width minus the time string and a space:
let fillsize=\${COLUMNS}-11
fill=””
while [ “\$fillsize” -gt “0” ]
do
fill=”-\${fill}” # fill with underscores to work on
let fillsize=\${fillsize}-1
done
}
PROMPT_COMMAND=prompt_command

To make the setting permanent, just add the following code in .bash_profile first:

if [ -f “\$HOME/.avkashbash_ps1” ]; then
. “\$HOME/.avkashbash_ps1”
fi

And then run the following command to set it:

\$sources .bash_profile

Or if you don’t want to make it permanent, just add the following code to .bashrc first:

if [ -f “\$HOME/.avkashbash_ps1” ]; then
. “\$HOME/.avkashbash_ps1”
fi

And then run the following command to set it:

\$sources .bashrc

Thats all.

Thanks for the guys at here and here!!

# Brew on Mac – Just 3 steps and you are ready

Step 1:

MachineHead:docs avkash\$ ruby -e “\$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)”
==> This script will install:
/usr/local/bin/brew
/usr/local/Library/…
/usr/local/share/man/man1/brew.1
==> The following directories will be made group writable:
/usr/local/.
/usr/local/bin
/usr/local/etc
/usr/local/lib
/usr/local/share
/usr/local/share/man
/usr/local/share/man/man1
/usr/local/share/info
==> The following directories will have their group set to admin:
/usr/local/.
/usr/local/bin
/usr/local/etc
/usr/local/lib
/usr/local/share
/usr/local/share/man
/usr/local/share/man/man1
/usr/local/share/info

Press ENTER to continue or any other key to abort
==> /usr/bin/sudo /bin/chmod g+rwx /usr/local/. /usr/local/bin /usr/local/etc /usr/local/lib /usr/local/share /usr/local/share/man /usr/local/share/man/man1 /usr/local/share/info
==> /usr/bin/sudo /usr/bin/chgrp admin /usr/local/. /usr/local/bin /usr/local/etc /usr/local/lib /usr/local/share /usr/local/share/man /usr/local/share/man/man1 /usr/local/share/info
remote: Counting objects: 121792, done.
remote: Compressing objects: 100% (59383/59383), done.
remote: Total 121792 (delta 85372), reused 95223 (delta 61439)
Receiving objects: 100% (121792/121792), 19.29 MiB | 283 KiB/s, done.
Resolving deltas: 100% (85372/85372), done.
From https://github.com/mxcl/homebrew
* [new branch] master -> origin/master
==> Installation successful!
You should run `brew doctor’ *before* you install anything.
Now type: brew help

Step 2:

Step 3:

Example usage:
brew [info | home | options ] [FORMULA…]
brew install FORMULA…
brew uninstall FORMULA…
brew search [foo]
brew list [FORMULA…]
brew update

Troubleshooting:
brew doctor
brew install -vd FORMULA
brew [–env | –config]

Brewing:
brew create [URL [–no-fetch]]
brew edit [FORMULA…]
open https://github.com/mxcl/homebrew/wiki/Formula-Cookbook

Further help:
man brew
brew home

Thats all!!

# Apache Weave: Big Data Application runtime and development framework by Continuuity

Continuuity decided to build Weave and be part of the journey to take Apache YARN to the next level of usability and functionality. Continuuity has been using Weave extensively to support their  products and  seen the benefit and power of Apache YARN and Weave combined.  Continuuity decided to share Weave under the Apache 2.0 license in an effort to collaborate with members of the community, broaden the set of applications and patterns that Weave supports, and further the overall adoption of Apache YARN.

Weave is NOT a replacement for Apache YARN.  It is instead a value-added framework that operates on top of Apache YARN.

What is Weave:  Weave is a simple set of libraries that allows you to easily manage distributed applications through an abstraction layer built on Apache YARN. Weave allows you to use YARN’s distributed capabilities with a programming model that is similar to running threads.

Features of Weave:
– Simple API for specifying, running and managing application lifecycle
– An easy way to communicate with an application or parts of an application
– A generic Application Master to better support simple applications
– Simplified archive management and local file transport
– Improved control over application logs, metrics and errors
– Discovery service
– And many more…

Weave Source code is available on github at http://github.com/continuuity/weave under the Apache 2.0 License.

Keyword: Hadoop, Yarn, MapReduce, Big Data

# Processing unstructured content from a URL in R

R has a built in function name readLines() which read a local file or an URL to read content line by line.

For example my blog URL is http://cloudcelebrity.wordpress.com so lets read it:

Warning message:
incomplete final line found on ‘http://cloudcelebrity.wordpress.com&#8217;

> length(myblog)
[1] 1380

As you can see above there is a warning message even when the myblog does have all the lines in it. To disable this warning message we can use “warn=FALSE” as below:

> length(myblog)
[1] 1380

And above there are no warning.. if I would want to print special lines based on line number I can just call the

> myblog[100]
[1] “/**/”

Lets get the summary:

> summary(myblog)
Length Class Mode
1380 character character

To read only limited lines in the same URL , I can also pass the total line limit as below:

> myblog <- readLines(“http://cloudcelebrity.wordpress.com&#8221;, 100, warn=FALSE)
> summary(myblog)
Length Class Mode
100 character character

After I read  all the lines in my blog, lets perform some specific search operation in the content:

To search all the lines which have Hadoop or hadoop in it we can run grep command to find all the line numbers as below:

Lets print hd to see all the line numbers:
> hd
[1] 706 803 804 807 811 812 814 819 822 823 826 827 830 834
[15] 837 863 869 871 872 875 899 911 912 921 923 925 927 931
[29] 934 1000 1010 1011 1080 1278 1281

To print all the lines with Hadoop or hadoop in it we can just use:

> myblog[hd]
[1] “<p>A: ACID – Atomicity, Consistency, Isolation and Durability <br />B: Big Data – Volume, Velocity, Variety <br />C: Columnar (or Column-Oriented) Database <br />D: Data Warehousing – Relevant and very useful <br />E: ETL – Extract, transform and load <br />F: Flume – A framework for populating Hadoop with data <br />G: Geospatial Analysis – A picture worth 1,000 words or more <br />H: Hadoop, HDFS, HBASE – Do you really want to know? <br />I:  In-Memory Database – A new definition of superfast access <br />J: Java – Hadoop gave biggest push in last years to stay in enterprise market <br />K: Kafka – High-throughput, distributed messaging system originally developed at LinkedIn <br />L: Latency – Low Latency and High Latency <br />M: Map/Reduce – MapReduce <br />N:  NoSQL Databases – No SQL Database or Not Only SQL <br />O: Oozie – Open-source workflow engine managing Hadoop job processing <br />P: Pig – Platform for analyzing huge data sets <br />Q: Quantitative Data Analysis <br />R: Relational Database – Still relevant and will be for some time <br />S: Sharding (Database Partitioning)  and Sqoop (SQL Database to Hadoop) <br />T: Text Analysis – Larger the information, more needed analysis <br />U: Unstructured Data – Growing faster than speed of thoughts <br />V: Visualization – Important to keep the information relevant <br />W: Whirr – Big Data Cloud Services i.e. Hadoop distributions by cloud vendors <br />X:  XML – Still eXtensible and no Introduction needed <br />Y: Yottabyte – Equal to 1,000 exabytes, 1 million petabytes and 1 billion terabytes <br />Z: Zookeeper – Help managing Hadoop nodes across a distributed network </p>”
[2] “ttt

[3] “ttt

## How Hadoop is shaping up at Disney World?

[5] “tttt

<br/><p> </p>”

……………….

………………

[34] “PDRTJS_settings_5386869_post_412={“id”:5386869,”unique_id”:”wp-post-412″,”title”:”Merging%20two%20data%20set%20in%20R%20based%20on%20one%20common%26nbsp%3Bcolumn”,”permalink”:”http:\/\/cloudcelebrity.wordpress.com\/2013\/01\/30\/merging-two-data-set-in-r-based-on-one-common-column\/”,”item_id”:”_post_412″}; if ( typeof PDRTJS_RATING !== ‘undefined’ ){if ( typeof PDRTJS_5386869_post_412 == ‘undefined’ ){PDRTJS_5386869_post_412 = new PDRTJS_RATING( PDRTJS_settings_5386869_post_412 );}}PDRTJS_settings_5386869_post_409={“id”:5386869,”unique_id”:”wp-post-409″,”title”:”Working%20with%20dataset%20in%20R%20and%20using%20subset%20to%20work%20on%26nbsp%3Bdataset”,”permalink”:”http:\/\/cloudcelebrity.wordpress.com\/2013\/01\/30\/working-with-dataset-in-r-and-using-subset-to-work-on-dataset\/”,”item_id”:”_post_409″}; if ( typeof PDRTJS_RATING !== ‘undefined’ ){if ( typeof PDRTJS_5386869_post_409 == ‘undefined’ ){PDRTJS_5386869_post_409 = new PDRTJS_RATING( PDRTJS_settings_5386869_post_409 );}}PDRTJS_settings_5386869_post_398={“id”:5386869,”unique_id”:”wp-post-398″,”title”:”Listing%20base%20datasets%20in%20R%20and%20loading%20as%20Data%26nbsp%3BFrame”,”permalink”:”http:\/\/cloudcelebrity.wordpress.com\/2013\/01\/19\/listing-base-datasets-in-r-and-loading-as-data-frame\/”,”item_id”:”_post_398″}; if ( typeof PDRTJS_RATING !== ‘undefined’ ){if ( typeof PDRTJS_5386869_post_398 == ‘undefined’ ){PDRTJS_5386869_post_398 = new PDRTJS_RATING( PDRTJS_settings_5386869_post_398 );}}PDRTJS_settings_5386869_post_397={“id”:5386869,”unique_id”:”wp-post-397″,”title”:”ABC%20of%20Data%26nbsp%3BScience”,”permalink”:”http:\/\/cloudcelebrity.wordpress.com\/2013\/01\/01\/abc-of-data-science\/”,”item_id”:”_post_397″}; if ( typeof PDRTJS_RATING !== ‘undefined’ ){if ( typeof PDRTJS_5386869_post_397 == ‘undefined’ ){PDRTJS_5386869_post_397 = new PDRTJS_RATING( PDRTJS_settings_5386869_post_397 );}}PDRTJS_settings_5386869_post_390={“id”:5386869,”unique_id”:”wp-post-390″,”title”:”R%20Programming%20Language%20%28Installation%20and%20configuration%20on%26nbsp%3BWindows%29″,”permalink”:”http:\/\/cloudcelebrity.wordpress.com\/2012\/12\/18\/r-programming-language-installation-and-configuration-on-windows\/”,”item_id”:”_post_390″}; if ( typeof PDRTJS_RATING !== ‘undefined’ ){if ( typeof PDRTJS_5386869_post_390 == ‘undefined’ ){PDRTJS_5386869_post_390 = new PDRTJS_RATING( PDRTJS_settings_5386869_post_390 );}}PDRTJS_settings_5386869_post_382={“id”:5386869,”unique_id”:”wp-post-382″,”title”:”How%20Hadoop%20is%20shaping%20up%20at%20Disney%26nbsp%3BWorld%3F”,”permalink”:”http:\/\/cloudcelebrity.wordpress.com\/2012\/11\/13\/how-hadoop-is-shaping-up-at-disney-world\/”,”item_id”:”_post_382″}; if ( typeof PDRTJS_RATING !== ‘undefined’ ){if ( typeof PDRTJS_5386869_post_382 == ‘undefined’ ){PDRTJS_5386869_post_382 = new PDRTJS_RATING( PDRTJS_settings_5386869_post_382 );}}PDRTJS_settings_5386869_post_376={“id”:5386869,”unique_id”:”wp-post-376″,”title”:”Hadoop%20Adventures%20with%20Microsoft%26nbsp%3BHDInsight”,”permalink”:”http:\/\/cloudcelebrity.wordpress.com\/2012\/11\/03\/hadoop-adventures-with-microsoft-hdinsight\/”,”item_id”:”_post_376″}; if ( typeof PDRTJS_RATING !== ‘undefined’ ){if ( typeof PDRTJS_5386869_post_376 == ‘undefined’ ){PDRTJS_5386869_post_376 = new PDRTJS_RATING( PDRTJS_settings_5386869_post_376 );}}”

Above I have just removed the lines in middle to show the result snippet.

In the above If I try to collect lines between 553 .. 648, there is list of all dataset in R, so to collect I can do the following:

> myLines <- myblog[553:648]
> summary(myLines)
Length Class Mode
96 character character

Note: Above mylines character list has total 110 lines so you can try printing and see what you get.

Create a list of available dataset from above myLines vector:

The pattern in myLines is as below:

[1] “AirPassengers Monthly Airline Passenger Numbers 1949-1960”
[2] “BJsales Sales Data with Leading Indicator”
[3] “BOD Biochemical Oxygen Demand”
[4] “CO2 Carbon Dioxide Uptake in Grass Plants”

……….

………

[92] “treering Yearly Treering Data, -6000-1979”
[93] “trees Girth, Height and Volume for Black Cherry Trees”
[94] “uspop Populations Recorded by the US Census”
[95] “volcano Topographic Information on Auckland’s Maunga”
[96] ” Whau Volcano”

so the first word is dataset name and after the space is the dataset information. To get the dataset name only lets use sub function as below:

> dsName <- sub(” .*”, “”, myLines)
> dsName
[1] “AirPassengers” “BJsales” “BOD”
[4] “CO2” “ChickWeight” “DNase”
[7] “EuStockMarkets” “” “Formaldehyde”
[10] “HairEyeColor” “Harman23.cor” “Harman74.cor”
[13] “Indometh” “InsectSprays” “JohnsonJohnson”
[16] “LakeHuron” “LifeCycleSavings” “Loblolly”
[19] “Nile” “Orange” “OrchardSprays”
[22] “PlantGrowth” “Puromycin” “Theoph”
[25] “Titanic” “ToothGrowth” “”
[31] “UKgas” “USAccDeaths” “USArrests”
[34] “USJudgeRatings” “” “USPersonalExpenditure”
[40] “ability.cov” “airmiles” “”
[43] “airquality” “anscombe” “”
[46] “attenu” “attitude” “austres”
[49] “” “beavers” “cars”
[52] “chickwts” “co2” “crimtab”
[55] “datasets-package” “discoveries” “esoph”
[58] “euro” “eurodist” “faithful”
[61] “freeny” “infert” “”
[64] “iris” “islands” “lh”
[67] “longley” “lynx” “morley”
[70] “mtcars” “nhtemp” “nottem”
[73] “” “occupationalStatus” “precip”
[76] “presidents” “pressure” “”
[79] “quakes” “randu” “”
[82] “rivers” “rock” “sleep”
[85] “stackloss” “state” “sunspot.month”
[88] “sunspot.year” “sunspots” “swiss”
[91] “” “treering” “trees”
[94] “uspop” “volcano” “”

Next work item:  mylines does has a few empty item so we can clean the array.

Note: Readline in R is used to prompt user to input something in console.

# Merging two data set in R based on one common column

Let’s create a new dataset using mtcars dataset and only mpg and hp column:

```> cars.mpg <- subset(mtcars, select = c(mpg, hp))

> cars.mpg
mpg  hp
Mazda RX4           21.0 110
Mazda RX4 Wag       21.0 110
Datsun 710          22.8  93
Hornet 4 Drive      21.4 110
Valiant             18.1 105
Duster 360          14.3 245
Merc 240D           24.4  62
Merc 230            22.8  95
Merc 280            19.2 123
Merc 280C           17.8 123
Merc 450SE          16.4 180
Merc 450SL          17.3 180
Merc 450SLC         15.2 180
…………..```

Let’s create another dataset using mtcars dataset and only hp and cyl column:

```> cars.cyl <- subset(mtcars, select = c(hp,cyl))
> cars.cyl
hp cyl
Mazda RX4           110   6
Mazda RX4 Wag       110   6
Datsun 710           93   4
Hornet 4 Drive      110   6
Valiant             105   6
Duster 360          245   8
Merc 240D            62   4
Merc 230             95   4
Merc 280            123   6
Merc 280C           123   6
Merc 450SE          180   8
Merc 450SL          180   8
Merc 450SLC         180   8
…………………..```

Now we can merge both dataset based on common column hp as below:

```
> merge.ds <- merge(cars.mpg, cars.cyl, by="hp")
> merge.ds
hp  mpg cyl
1   52 30.4   4
2   62 24.4   4
3   65 33.9   4
4   66 32.4   4
5   66 32.4   4
6   66 27.3   4
7   66 27.3   4
8   91 26.0   4
9   93 22.8   4
10  95 22.8   4
11  97 21.5   4
12 105 18.1   6
13 109 21.4   4
14 110 21.0   6
15 110 21.0   6
16 110 21.0   6
17 110 21.0   6
18 110 21.0   6
19 110 21.0   6
20 110 21.4   6
21 110 21.4   6
22 110 21.4   6
23 113 30.4   4
24 123 17.8   6
25 123 17.8   6
26 123 19.2   6
27 123 19.2   6
28 150 15.2   8
29 150 15.2   8
30 150 15.5   8
31 150 15.5   8
32 175 18.7   8
33 175 18.7   6
34 175 18.7   8
35 175 19.7   8
36 175 19.7   6
37 175 19.7   8
38 175 19.2   8
39 175 19.2   6
40 175 19.2   8
41 180 16.4   8
42 180 16.4   8
43 180 16.4   8
44 180 17.3   8
45 180 17.3   8
46 180 17.3   8
47 180 15.2   8
48 180 15.2   8
49 180 15.2   8
50 205 10.4   8
51 215 10.4   8
52 230 14.7   8
53 245 14.3   8
54 245 14.3   8
55 245 13.3   8
56 245 13.3   8
57 264 15.8   8
58 335 15.0   8

Why you see total 58 merged rows when there were only 32 rows in original data sets?

This is because "merge is a generic function whose principal method is for data frames: the default method coerces its arguments to data frames and calls the "data.frame" method."
?merge```

# Working with dataset in R and using subset to work on dataset

Let’s load built in data set

>Library(datasets)

Let’s access one of the dataset name mtcars:

>mtcars

 mpg cyl  disp  hp drat    wt  qsec vs am gear carb Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1 Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4 Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4 Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3 Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3 Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3 Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4 Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4 Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4 Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2 Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1 Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2 AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2 Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4 Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2 Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1 Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2 Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2 Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4 Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6 Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8 Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

So what is this data set? Running str(_dataset_name) will tell you more about it:

```> str(mtcars)
'data.frame':  32 obs. of  11 variables:
\$ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
\$ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
\$ disp: num  160 160 108 258 360 ...
\$ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
\$ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
\$ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
\$ qsec: num  16.5 17 18.6 19.4 17 ...
\$ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
\$ am  : num  1 1 1 0 0 0 0 0 0 0 ...
\$ gear: num  4 4 4 3 3 3 3 4 4 4 ...
\$ carb: num  4 4 1 1 2 1 4 2 2 4 ...```

Let’s see the top of the data frame using head

```> head(mtcars)
mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1```

You can also see the tail as well:

```> tail(mtcars)
mpg cyl  disp  hp drat    wt qsec vs am gear carb
Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2
Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.5  0  1    5    4
Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.5  0  1    5    6
Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.6  0  1    5    8
Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.6  1  1    4    2```

So how many rows are in this dataset?

```> nrow(mtcars)
[1] 32```

So how many columns are in this dataset?

```> ncol(mtcars)
[1] 11```

Ok can we get the name of column headers? Sure

```> names(mtcars)
[1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear" "carb"```

So let’s see the summary for our dataset:

> summary(mtcars)

```      mpg             cyl             disp             hp             drat
Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0   Min.   :2.760
1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5   1st Qu.:3.080
Median :19.20   Median :6.000   Median :196.3   Median :123.0   Median :3.695
Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7   Mean   :3.597
3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0   3rd Qu.:3.920
Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0   Max.   :4.930
wt             qsec             vs               am
Min.   :1.513   Min.   :14.50   Min.   :0.0000   Min.   :0.0000
1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000   1st Qu.:0.0000
Median :3.325   Median :17.71   Median :0.0000   Median :0.0000
Mean   :3.217   Mean   :17.85   Mean   :0.4375   Mean   :0.4062
3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000   3rd Qu.:1.0000
Max.   :5.424   Max.   :22.90   Max.   :1.0000   Max.   :1.0000
gear            carb
Min.   :3.000   Min.   :1.000
1st Qu.:3.000   1st Qu.:2.000
Median :4.000   Median :2.000
Mean   :3.688   Mean   :2.812
3rd Qu.:4.000   3rd Qu.:4.000
Max.   :5.000   Max.   :8.000```

As you can see above the summary give you the mean, media, max and other values for each column.

Using Subset with Dataset in R

How to list data frame with a few columns? Sure we will be using subset() for this:

Subset(dataframe, condition, format)

For example the following subset will show all the rows in mtcrs but only mpg column:

```> subset(mtcars, select = c(mpg))
mpg
Mazda RX4           21.0
Mazda RX4 Wag       21.0
Datsun 710          22.8
Hornet 4 Drive      21.4
Valiant             18.1
Duster 360          14.3
Merc 240D           24.4
Merc 230            22.8
Merc 280            19.2
Merc 280C           17.8
Merc 450SE          16.4
Merc 450SL          17.3
Merc 450SLC         15.2
Lincoln Continental 10.4
Chrysler Imperial   14.7
Fiat 128            32.4
Honda Civic         30.4
Toyota Corolla      33.9
Toyota Corona       21.5
Dodge Challenger    15.5
AMC Javelin         15.2
Camaro Z28          13.3
Pontiac Firebird    19.2
Fiat X1-9           27.3
Porsche 914-2       26.0
Lotus Europa        30.4
Ford Pantera L      15.8
Ferrari Dino        19.7
Maserati Bora       15.0
Volvo 142E          21.4```

Now what if we want to see the list of cars which have mpg above 20  along with mpg and hp column:

```> subset(mtcars, mpg > 20, select = c(mpg, hp))
mpg  hp
Mazda RX4      21.0 110
Mazda RX4 Wag  21.0 110
Datsun 710     22.8  93
Hornet 4 Drive 21.4 110
Merc 240D      24.4  62
Merc 230       22.8  95
Fiat 128       32.4  66
Honda Civic    30.4  52
Toyota Corolla 33.9  65
Toyota Corona  21.5  97
Fiat X1-9      27.3  66
Porsche 914-2  26.0  91
Lotus Europa   30.4 113
Volvo 142E     21.4 109```

We can also call subset within subset.

For example we need to get a list of cars with HP above 100 and mpg above 20.

```> subset(subset(mtcars, mpg > 20, select = c(mpg, hp)),hp >= 100)
mpg  hp
Mazda RX4      21.0 110
Mazda RX4 Wag  21.0 110
Hornet 4 Drive 21.4 110
Lotus Europa   30.4 113
Volvo 142E     21.4 109

Note: following will not work as condition will not match and you will see a full list of cars with mpg and hp column
> subset(mtcars, mpg > 20 && hp >= 100, select = c(mpg, hp))

You can also use subset to show specific columns
> subset(mtcars[1:3])
mpg cyl  disp
Mazda RX4           21.0   6 160.0
Mazda RX4 Wag       21.0   6 160.0
Datsun 710          22.8   4 108.0
Hornet 4 Drive      21.4   6 258.0
```> subset(mtcars[c("mpg", “cyl”, "hp")])