You can get some of the individual model metrics for your model based on training and/or validation data. Here is the code snippet:
Note: I am creating a test data frame to run H2O Deep Learning algorithm and then showing how to collect individual model metrics based on training and/or validation data below.
import h2o
h2o.init(strict_version_check= False , port = 54345)
from h2o.estimators.deeplearning import H2ODeepLearningEstimator
model = H2ODeepLearningEstimator()
rows = [[1,2,3,4,0], [2,1,2,4,1], [2,1,4,2,1], [0,1,2,34,1], [2,3,4,1,0]] * 50
fr = h2o.H2OFrame(rows)
X = fr.col_names[0:4]
## Classification Model
fr[4] = fr[4].asfactor()
model.train(x=X, y="C5", training_frame=fr)
print('Model Type:', model.type)
print('logloss', model.logloss(valid = False))
print('Accuracy', model.accuracy(valid = False))
print('AUC', model.auc(valid = False))
print('R2', model.r2(valid = False))
print('RMSE', model.rmse(valid = False))
print('Error', model.error(valid = False))
print('MCC', model.mcc(valid = False))
## Regression Model
fr = h2o.H2OFrame(rows)
model.train(x=X, y="C5", training_frame=fr)
print('Model Type:', model.type)
print('R2', model.r2(valid = False))
print('RMSE', model.rmse(valid = False))
Note: As I did not pass validation frame thats why I set valid = False to get training metrics. If you have passed validation metrics then you can set valid = True to get validation metrics as well.
If you want to see what is inside model object you can look at the json object as below:
model.get_params()
Thats it, enjoy!!